A categorical approach to Picard-Vessiot theory
Theory and applications of categories, Tome 32 (2017), pp. 488-525.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

Picard-Vessiot rings are present in many settings like differential Galois theory, difference Galois theory and Galois theory of Artinian simple module algebras. In this article we set up an abstract framework in which we can prove theorems on existence and uniqueness of Picard-Vessiot rings, as well as on Galois groups corresponding to the Picard-Vessiot rings. As the present approach restricts to the categorical properties which all the categories of differential modules resp.~difference modules etc.~share, it gives unified proofs for all these Galois theories (and maybe more general ones).
Publié le :
Classification : 13B05, 18D10, 12H20
Keywords: Tannakian categories, Picard-Vessiot theory, Galois theory
@article{TAC_2017_32_a13,
     author = {Andreas Maurischat},
     title = {A categorical approach to {Picard-Vessiot} theory},
     journal = {Theory and applications of categories},
     pages = {488--525},
     publisher = {mathdoc},
     volume = {32},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2017_32_a13/}
}
TY  - JOUR
AU  - Andreas Maurischat
TI  - A categorical approach to Picard-Vessiot theory
JO  - Theory and applications of categories
PY  - 2017
SP  - 488
EP  - 525
VL  - 32
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2017_32_a13/
LA  - en
ID  - TAC_2017_32_a13
ER  - 
%0 Journal Article
%A Andreas Maurischat
%T A categorical approach to Picard-Vessiot theory
%J Theory and applications of categories
%D 2017
%P 488-525
%V 32
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2017_32_a13/
%G en
%F TAC_2017_32_a13
Andreas Maurischat. A categorical approach to Picard-Vessiot theory. Theory and applications of categories, Tome 32 (2017), pp. 488-525. http://geodesic.mathdoc.fr/item/TAC_2017_32_a13/