On biadjoint triangles
Theory and applications of categories, Tome 31 (2016), pp. 217-256.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We prove a biadjoint triangle theorem and its strict version, which are 2-dimensional analogues of the adjoint triangle theorem of Dubuc. Similarly to the 1-dimensional case, we demonstrate how we can apply our results to get the pseudomonadicity characterization (due to Le Creurer, Marmolejo and Vitale). Furthermore, we study applications of our main theorems in the context of the 2-monadic approach to coherence. As a direct consequence of our strict biadjoint triangle theorem, we give the construction (due to Lack) of the left 2-adjoint to the inclusion of the strict algebras into the pseudoalgebras. In the last section, we give two brief applications on lifting biadjunctions and pseudo-Kan extensions.
Publié le :
Classification : 18D05, 18A40, 18C15
Keywords: adjoint triangles, descent objects, Kan extensions, pseudomonads, biadjunctions
@article{TAC_2016_31_a8,
     author = {Fernando Lucatelli Nunes},
     title = {On biadjoint triangles},
     journal = {Theory and applications of categories},
     pages = {217--256},
     publisher = {mathdoc},
     volume = {31},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2016_31_a8/}
}
TY  - JOUR
AU  - Fernando Lucatelli Nunes
TI  - On biadjoint triangles
JO  - Theory and applications of categories
PY  - 2016
SP  - 217
EP  - 256
VL  - 31
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2016_31_a8/
LA  - en
ID  - TAC_2016_31_a8
ER  - 
%0 Journal Article
%A Fernando Lucatelli Nunes
%T On biadjoint triangles
%J Theory and applications of categories
%D 2016
%P 217-256
%V 31
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2016_31_a8/
%G en
%F TAC_2016_31_a8
Fernando Lucatelli Nunes. On biadjoint triangles. Theory and applications of categories, Tome 31 (2016), pp. 217-256. http://geodesic.mathdoc.fr/item/TAC_2016_31_a8/