A characterization of central extensions in the variety of quandles
Theory and applications of categories, Tome 31 (2016), pp. 201-216.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

The category of symmetric quandles is a Mal'tsev variety whose subvariety of abelian symmetric quandles is the category of abelian algebras. We give an algebraic description of the quandle extensions that are central for the adjunction between the variety of quandles and its subvariety of abelian symmetric quandles.
Publié le :
Classification : 57M27, 08B05, 18A20, 13B05
Keywords: Quandle, symmetric quandle, abelian object, Mal'tsev variety, central extension, categorical Galois theory
@article{TAC_2016_31_a7,
     author = {Val\'erian Even and Marino Gran and Andrea Montoli},
     title = {A characterization of central extensions in the variety of quandles},
     journal = {Theory and applications of categories},
     pages = {201--216},
     publisher = {mathdoc},
     volume = {31},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2016_31_a7/}
}
TY  - JOUR
AU  - Valérian Even
AU  - Marino Gran
AU  - Andrea Montoli
TI  - A characterization of central extensions in the variety of quandles
JO  - Theory and applications of categories
PY  - 2016
SP  - 201
EP  - 216
VL  - 31
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2016_31_a7/
LA  - en
ID  - TAC_2016_31_a7
ER  - 
%0 Journal Article
%A Valérian Even
%A Marino Gran
%A Andrea Montoli
%T A characterization of central extensions in the variety of quandles
%J Theory and applications of categories
%D 2016
%P 201-216
%V 31
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2016_31_a7/
%G en
%F TAC_2016_31_a7
Valérian Even; Marino Gran; Andrea Montoli. A characterization of central extensions in the variety of quandles. Theory and applications of categories, Tome 31 (2016), pp. 201-216. http://geodesic.mathdoc.fr/item/TAC_2016_31_a7/