A characterization of central extensions in the variety of quandles
Theory and applications of categories, Tome 31 (2016), pp. 201-216
Cet article a éte moissonné depuis la source Theory and Applications of Categories website
The category of symmetric quandles is a Mal'tsev variety whose subvariety of abelian symmetric quandles is the category of abelian algebras. We give an algebraic description of the quandle extensions that are central for the adjunction between the variety of quandles and its subvariety of abelian symmetric quandles.
Publié le :
Classification :
57M27, 08B05, 18A20, 13B05
Keywords: Quandle, symmetric quandle, abelian object, Mal'tsev variety, central extension, categorical Galois theory
Keywords: Quandle, symmetric quandle, abelian object, Mal'tsev variety, central extension, categorical Galois theory
@article{TAC_2016_31_a7,
author = {Val\'erian Even and Marino Gran and Andrea Montoli},
title = {A characterization of central extensions in the variety of quandles},
journal = {Theory and applications of categories},
pages = {201--216},
year = {2016},
volume = {31},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TAC_2016_31_a7/}
}
TY - JOUR AU - Valérian Even AU - Marino Gran AU - Andrea Montoli TI - A characterization of central extensions in the variety of quandles JO - Theory and applications of categories PY - 2016 SP - 201 EP - 216 VL - 31 UR - http://geodesic.mathdoc.fr/item/TAC_2016_31_a7/ LA - en ID - TAC_2016_31_a7 ER -
Valérian Even; Marino Gran; Andrea Montoli. A characterization of central extensions in the variety of quandles. Theory and applications of categories, Tome 31 (2016), pp. 201-216. http://geodesic.mathdoc.fr/item/TAC_2016_31_a7/