On Evrard's homotopy fibrant replacement of a functor
Theory and applications of categories, Tome 31 (2016), pp. 989-1015
Cet article a éte moissonné depuis la source Theory and Applications of Categories website
We provide a more economical refined version of Evrard's categorical cocylinder factorization of a functor. We show that any functor between small categories can be factored into a homotopy equivalence followed by a (co)fibred functor which satisfies the (dual) assumption of Quillen's Theorem B.
Publié le :
Classification :
18D30, 18G30, 18G55
Keywords: Homotopy fibrant replacement of a functor, Quillen theorem B, Evrard's theorem
Keywords: Homotopy fibrant replacement of a functor, Quillen theorem B, Evrard's theorem
@article{TAC_2016_31_a33,
author = {Boris Shoikhet},
title = {On {Evrard's} homotopy fibrant replacement of a functor},
journal = {Theory and applications of categories},
pages = {989--1015},
year = {2016},
volume = {31},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TAC_2016_31_a33/}
}
Boris Shoikhet. On Evrard's homotopy fibrant replacement of a functor. Theory and applications of categories, Tome 31 (2016), pp. 989-1015. http://geodesic.mathdoc.fr/item/TAC_2016_31_a33/