On Evrard's homotopy fibrant replacement of a functor
Theory and applications of categories, Tome 31 (2016), pp. 989-1015.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We provide a more economical refined version of Evrard's categorical cocylinder factorization of a functor. We show that any functor between small categories can be factored into a homotopy equivalence followed by a (co)fibred functor which satisfies the (dual) assumption of Quillen's Theorem B.
Publié le :
Classification : 18D30, 18G30, 18G55
Keywords: Homotopy fibrant replacement of a functor, Quillen theorem B, Evrard's theorem
@article{TAC_2016_31_a33,
     author = {Boris Shoikhet},
     title = {On {Evrard's} homotopy fibrant replacement of a functor},
     journal = {Theory and applications of categories},
     pages = {989--1015},
     publisher = {mathdoc},
     volume = {31},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2016_31_a33/}
}
TY  - JOUR
AU  - Boris Shoikhet
TI  - On Evrard's homotopy fibrant replacement of a functor
JO  - Theory and applications of categories
PY  - 2016
SP  - 989
EP  - 1015
VL  - 31
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2016_31_a33/
LA  - en
ID  - TAC_2016_31_a33
ER  - 
%0 Journal Article
%A Boris Shoikhet
%T On Evrard's homotopy fibrant replacement of a functor
%J Theory and applications of categories
%D 2016
%P 989-1015
%V 31
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2016_31_a33/
%G en
%F TAC_2016_31_a33
Boris Shoikhet. On Evrard's homotopy fibrant replacement of a functor. Theory and applications of categories, Tome 31 (2016), pp. 989-1015. http://geodesic.mathdoc.fr/item/TAC_2016_31_a33/