Voir la notice de l'article provenant de la source Theory and Applications of Categories website
We study the theory of representations of a 2-group G in Baez-Crans 2-vector spaces over a field k of arbitrary characteristic, and the corresponding 2-vector spaces of intertwiners. We also characterize the irreducible and indecomposable representations. Finally, it is shown that when the 2-group is finite and the base field k is of characteristic zero or coprime to the orders of the homotopy groups of G, the theory essentially reduces to the theory of k-linear representations of the first homotopy group of G, the remaining homotopy invariants of G playing no role.
@article{TAC_2016_31_a31, author = {Benjamin A. Heredia and Josep Elgueta}, title = {On the representations of 2-groups in {Baez-Crans} 2-vector spaces}, journal = {Theory and applications of categories}, pages = {907--927}, publisher = {mathdoc}, volume = {31}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TAC_2016_31_a31/} }
TY - JOUR AU - Benjamin A. Heredia AU - Josep Elgueta TI - On the representations of 2-groups in Baez-Crans 2-vector spaces JO - Theory and applications of categories PY - 2016 SP - 907 EP - 927 VL - 31 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TAC_2016_31_a31/ LA - en ID - TAC_2016_31_a31 ER -
Benjamin A. Heredia; Josep Elgueta. On the representations of 2-groups in Baez-Crans 2-vector spaces. Theory and applications of categories, Tome 31 (2016), pp. 907-927. http://geodesic.mathdoc.fr/item/TAC_2016_31_a31/