Projectivity, continuity and adjointness: quantales, Q-posets and Q-modules
Theory and applications of categories, Tome 31 (2016), pp. 839-851.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

In this paper, projective modules over a quantale are characterized by distributivity, continuity, and adjointness conditions. It is then shown that a morphism Q --> A of commutative quantales is coexponentiable if and only if the corresponding Q-module is projective, and hence, satisfies these equivalent conditions.
Publié le :
Classification : 06F07, 18A40, 18D10, 18D20
Keywords: projective, flat, completely distributive, totally continuous, quantale module
@article{TAC_2016_31_a29,
     author = {Susan Niefield},
     title = {Projectivity, continuity and adjointness: quantales, {Q-posets} and {
Q-modules}},
     journal = {Theory and applications of categories},
     pages = {839--851},
     publisher = {mathdoc},
     volume = {31},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2016_31_a29/}
}
TY  - JOUR
AU  - Susan Niefield
TI  - Projectivity, continuity and adjointness: quantales, Q-posets and 
Q-modules
JO  - Theory and applications of categories
PY  - 2016
SP  - 839
EP  - 851
VL  - 31
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2016_31_a29/
LA  - en
ID  - TAC_2016_31_a29
ER  - 
%0 Journal Article
%A Susan Niefield
%T Projectivity, continuity and adjointness: quantales, Q-posets and 
Q-modules
%J Theory and applications of categories
%D 2016
%P 839-851
%V 31
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2016_31_a29/
%G en
%F TAC_2016_31_a29
Susan Niefield. Projectivity, continuity and adjointness: quantales, Q-posets and 
Q-modules. Theory and applications of categories, Tome 31 (2016), pp. 839-851. http://geodesic.mathdoc.fr/item/TAC_2016_31_a29/