Enriched Yoneda lemma
Theory and applications of categories, Tome 31 (2016), pp. 833-838.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We present a version of the enriched Yoneda lemma for conventional (not $\infty$-) categories. We do not require the base monoidal category M to be closed or symmetric monoidal. In the case M has colimits and the monoidal structure in M preserves colimits in each argument, we prove that the Yoneda embedding A to P_M(A) is a universal functor from A to a category with colimits, left-tensored over M.
Publié le :
Classification : 18D20
Keywords: enriched categories, Yoneda embedding, left-tensored categories
@article{TAC_2016_31_a28,
     author = {Vladimir Hinich},
     title = {Enriched {Yoneda} lemma},
     journal = {Theory and applications of categories},
     pages = {833--838},
     publisher = {mathdoc},
     volume = {31},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2016_31_a28/}
}
TY  - JOUR
AU  - Vladimir Hinich
TI  - Enriched Yoneda lemma
JO  - Theory and applications of categories
PY  - 2016
SP  - 833
EP  - 838
VL  - 31
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2016_31_a28/
LA  - en
ID  - TAC_2016_31_a28
ER  - 
%0 Journal Article
%A Vladimir Hinich
%T Enriched Yoneda lemma
%J Theory and applications of categories
%D 2016
%P 833-838
%V 31
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2016_31_a28/
%G en
%F TAC_2016_31_a28
Vladimir Hinich. Enriched Yoneda lemma. Theory and applications of categories, Tome 31 (2016), pp. 833-838. http://geodesic.mathdoc.fr/item/TAC_2016_31_a28/