Voir la notice de l'article provenant de la source Theory and Applications of Categories website
We present a version of the enriched Yoneda lemma for conventional (not $\infty$-) categories. We do not require the base monoidal category M to be closed or symmetric monoidal. In the case M has colimits and the monoidal structure in M preserves colimits in each argument, we prove that the Yoneda embedding A to P_M(A) is a universal functor from A to a category with colimits, left-tensored over M.
@article{TAC_2016_31_a28, author = {Vladimir Hinich}, title = {Enriched {Yoneda} lemma}, journal = {Theory and applications of categories}, pages = {833--838}, publisher = {mathdoc}, volume = {31}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TAC_2016_31_a28/} }
Vladimir Hinich. Enriched Yoneda lemma. Theory and applications of categories, Tome 31 (2016), pp. 833-838. http://geodesic.mathdoc.fr/item/TAC_2016_31_a28/