Strict $\omega$-categories are monadic over polygraphs
Theory and applications of categories, Tome 31 (2016), pp. 799-806.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We give a direct proof that the category of strict $\omega$-categories is monadic over the category of polygraphs.
Publié le :
Classification : 18D05, 18C15
Keywords: $\omega$-categories, polygraphs, monads
@article{TAC_2016_31_a26,
     author = {Francois Metayer},
     title = {Strict $\omega$-categories are monadic over polygraphs},
     journal = {Theory and applications of categories},
     pages = {799--806},
     publisher = {mathdoc},
     volume = {31},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2016_31_a26/}
}
TY  - JOUR
AU  - Francois Metayer
TI  - Strict $\omega$-categories are monadic over polygraphs
JO  - Theory and applications of categories
PY  - 2016
SP  - 799
EP  - 806
VL  - 31
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2016_31_a26/
LA  - en
ID  - TAC_2016_31_a26
ER  - 
%0 Journal Article
%A Francois Metayer
%T Strict $\omega$-categories are monadic over polygraphs
%J Theory and applications of categories
%D 2016
%P 799-806
%V 31
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2016_31_a26/
%G en
%F TAC_2016_31_a26
Francois Metayer. Strict $\omega$-categories are monadic over polygraphs. Theory and applications of categories, Tome 31 (2016), pp. 799-806. http://geodesic.mathdoc.fr/item/TAC_2016_31_a26/