The linearity of traces in monoidal categories and bicategories
Theory and applications of categories, Tome 31 (2016), pp. 594-689.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We show that in any symmetric monoidal category, if a weight for colimits is absolute, then the resulting colimit of any diagram of dualizable objects is again dualizable. Moreover, in this case, if an endomorphism of the colimit is induced by an endomorphism of the diagram, then its trace can be calculated as a linear combination of traces on the objects in the diagram. The formal nature of this result makes it easy to generalize to traces in homotopical contexts (using derivators) and traces in bicategories. These generalizations include the familiar additivity of the Euler characteristic and Lefschetz number along cofiber sequences, as well as an analogous result for the Reidemeister trace, but also the orbit-counting theorem for sets with a group action, and a general formula for homotopy colimits over EI-categories.
Publié le :
Classification : 18D05, 18D20, 55U30
Keywords: duality, trace, derivator, absolute colimit
@article{TAC_2016_31_a22,
     author = {Kate Ponto and Michael Shulman},
     title = {The linearity of traces in monoidal categories and bicategories},
     journal = {Theory and applications of categories},
     pages = {594--689},
     publisher = {mathdoc},
     volume = {31},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2016_31_a22/}
}
TY  - JOUR
AU  - Kate Ponto
AU  - Michael Shulman
TI  - The linearity of traces in monoidal categories and bicategories
JO  - Theory and applications of categories
PY  - 2016
SP  - 594
EP  - 689
VL  - 31
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2016_31_a22/
LA  - en
ID  - TAC_2016_31_a22
ER  - 
%0 Journal Article
%A Kate Ponto
%A Michael Shulman
%T The linearity of traces in monoidal categories and bicategories
%J Theory and applications of categories
%D 2016
%P 594-689
%V 31
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2016_31_a22/
%G en
%F TAC_2016_31_a22
Kate Ponto; Michael Shulman. The linearity of traces in monoidal categories and bicategories. Theory and applications of categories, Tome 31 (2016), pp. 594-689. http://geodesic.mathdoc.fr/item/TAC_2016_31_a22/