Representation and character theory of finite categorical groups
Theory and applications of categories, Tome 31 (2016), pp. 542-570.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We study the gerbal representations of a finite group G or, equivalently, module categories over Ostrik's category $Vec_G^\alpha$ for a 3-cocycle $\alpha$. We adapt Bartlett's string diagram formalism to this situation to prove that the categorical character of a gerbal representation is a representation of the inertia groupoid of a categorical group. We interpret such a representation as a module over the twisted Drinfeld double $D^\alpha(G)$.
Publié le :
Classification : 20J99, 20N99
Keywords: categorical groups, representation theory, inertia groupoid, drinfeld double
@article{TAC_2016_31_a20,
     author = {Nora Ganter and Robert Usher},
     title = {Representation and character theory of finite categorical groups},
     journal = {Theory and applications of categories},
     pages = {542--570},
     publisher = {mathdoc},
     volume = {31},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2016_31_a20/}
}
TY  - JOUR
AU  - Nora Ganter
AU  - Robert Usher
TI  - Representation and character theory of finite categorical groups
JO  - Theory and applications of categories
PY  - 2016
SP  - 542
EP  - 570
VL  - 31
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2016_31_a20/
LA  - en
ID  - TAC_2016_31_a20
ER  - 
%0 Journal Article
%A Nora Ganter
%A Robert Usher
%T Representation and character theory of finite categorical groups
%J Theory and applications of categories
%D 2016
%P 542-570
%V 31
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2016_31_a20/
%G en
%F TAC_2016_31_a20
Nora Ganter; Robert Usher. Representation and character theory of finite categorical groups. Theory and applications of categories, Tome 31 (2016), pp. 542-570. http://geodesic.mathdoc.fr/item/TAC_2016_31_a20/