Relative internal actions
Theory and applications of categories, Tome 31 (2016), pp. 444-461.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

For a relative exact homological category (C,E), we define relative points over an arbitrary object in C, and show that they form an exact homological category. In particular, it follows that the full subcategory of nilpotent objects in an exact homological category is an exact homological category. These nilpotent objects are defined with respect to a Birkhoff subcategory in C as defined by T. Everaert and T. Van der Linden. In addition, we introduce relative internal actions and show that, just as in the classical case, there is an equivalence of categories between the category of relative points over an object and the category of relative internal actions for the same object.
Publié le :
Classification : 18G50, 18G25, 18A20, 18A05, 18A25, 18A32, 18C20
Keywords: relative semi-abelian category, relative homological category, semi-abelian category, homological category, category of relative points, relative internal actions
@article{TAC_2016_31_a15,
     author = {James Richard Andrew Gray and Tamar Janelidze-Gray},
     title = {Relative internal actions},
     journal = {Theory and applications of categories},
     pages = {444--461},
     publisher = {mathdoc},
     volume = {31},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2016_31_a15/}
}
TY  - JOUR
AU  - James Richard Andrew Gray
AU  - Tamar Janelidze-Gray
TI  - Relative internal actions
JO  - Theory and applications of categories
PY  - 2016
SP  - 444
EP  - 461
VL  - 31
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2016_31_a15/
LA  - en
ID  - TAC_2016_31_a15
ER  - 
%0 Journal Article
%A James Richard Andrew Gray
%A Tamar Janelidze-Gray
%T Relative internal actions
%J Theory and applications of categories
%D 2016
%P 444-461
%V 31
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2016_31_a15/
%G en
%F TAC_2016_31_a15
James Richard Andrew Gray; Tamar Janelidze-Gray. Relative internal actions. Theory and applications of categories, Tome 31 (2016), pp. 444-461. http://geodesic.mathdoc.fr/item/TAC_2016_31_a15/