Spectra of compact regular frames
Theory and applications of categories, Tome 31 (2016), pp. 365-383.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

By Isbell duality, each compact regular frame L is isomorphic to the frame of opens of a compact Hausdorff space X. In this note we study the spectrum Spec(L) of prime filters of a compact regular frame L. We prove that X is realized as the minimum of Spec(L) and the Gleason cover of X as the maximum of Spec(L). We also characterize zero-dimensional, extremally disconnected, and scattered compact regular frames by means of Spec(L).
Publié le :
Classification : 06D22, 06D20, 06E15, 54G05, 54G12
Keywords: Frame, the spectrum of a frame, compact regular frame, compact Hausdorff space, Gleason cover, zero-dimensional frame, extremally disconnected frame, scattered frame
@article{TAC_2016_31_a11,
     author = {Guram Bezhanishvili and David Gabelaia and Mamuka Jibladze},
     title = {Spectra of compact regular frames},
     journal = {Theory and applications of categories},
     pages = {365--383},
     publisher = {mathdoc},
     volume = {31},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2016_31_a11/}
}
TY  - JOUR
AU  - Guram Bezhanishvili
AU  - David Gabelaia
AU  - Mamuka Jibladze
TI  - Spectra of compact regular frames
JO  - Theory and applications of categories
PY  - 2016
SP  - 365
EP  - 383
VL  - 31
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2016_31_a11/
LA  - en
ID  - TAC_2016_31_a11
ER  - 
%0 Journal Article
%A Guram Bezhanishvili
%A David Gabelaia
%A Mamuka Jibladze
%T Spectra of compact regular frames
%J Theory and applications of categories
%D 2016
%P 365-383
%V 31
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2016_31_a11/
%G en
%F TAC_2016_31_a11
Guram Bezhanishvili; David Gabelaia; Mamuka Jibladze. Spectra of compact regular frames. Theory and applications of categories, Tome 31 (2016), pp. 365-383. http://geodesic.mathdoc.fr/item/TAC_2016_31_a11/