Stacks and sheaves of categories as fibrant objects, II
Theory and applications of categories, Tome 31 (2016), pp. 330-3364.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We revisit what we call the fibred topology on a fibred category over a site and we prove a few basic results concerning this topology. We give a general result concerning the invariance of a 2-category of stacks under change of base.
Publié le :
Classification : 18F10, 18D30, 18G55
Keywords: Grothendieck topology, fibred category, stack, model category
@article{TAC_2016_31_a10,
     author = {Alexandru E. Stanculescu},
     title = {Stacks and sheaves of categories as fibrant objects, {II}},
     journal = {Theory and applications of categories},
     pages = {330--3364},
     publisher = {mathdoc},
     volume = {31},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2016_31_a10/}
}
TY  - JOUR
AU  - Alexandru E. Stanculescu
TI  - Stacks and sheaves of categories as fibrant objects, II
JO  - Theory and applications of categories
PY  - 2016
SP  - 330
EP  - 3364
VL  - 31
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2016_31_a10/
LA  - en
ID  - TAC_2016_31_a10
ER  - 
%0 Journal Article
%A Alexandru E. Stanculescu
%T Stacks and sheaves of categories as fibrant objects, II
%J Theory and applications of categories
%D 2016
%P 330-3364
%V 31
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2016_31_a10/
%G en
%F TAC_2016_31_a10
Alexandru E. Stanculescu. Stacks and sheaves of categories as fibrant objects, II. Theory and applications of categories, Tome 31 (2016), pp. 330-3364. http://geodesic.mathdoc.fr/item/TAC_2016_31_a10/