The heart of a combinatorial model category
Theory and applications of categories, Tome 31 (2016), pp. 31-62.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We show that every small model category that satisfies certain size conditions can be completed to yield a combinatorial model category, and conversely, every combinatorial model category arises in this way. We will also see that these constructions preserve right properness and compatibility with simplicial enrichment. Along the way, we establish some technical results on the index of accessibility of various constructions on accessible categories, which may be of independent interest.
Publié le :
Classification : 18G55, 55U35 (Primary) 18D35, 55P60 (Secondary)
Keywords: cofibrant generation, closed model category, weak factorization system, locally presentable category, ind-object, filtered colimit
@article{TAC_2016_31_a1,
     author = {Zhen Lin Low},
     title = {The heart of a combinatorial model category},
     journal = {Theory and applications of categories},
     pages = {31--62},
     publisher = {mathdoc},
     volume = {31},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2016_31_a1/}
}
TY  - JOUR
AU  - Zhen Lin Low
TI  - The heart of a combinatorial model category
JO  - Theory and applications of categories
PY  - 2016
SP  - 31
EP  - 62
VL  - 31
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2016_31_a1/
LA  - en
ID  - TAC_2016_31_a1
ER  - 
%0 Journal Article
%A Zhen Lin Low
%T The heart of a combinatorial model category
%J Theory and applications of categories
%D 2016
%P 31-62
%V 31
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2016_31_a1/
%G en
%F TAC_2016_31_a1
Zhen Lin Low. The heart of a combinatorial model category. Theory and applications of categories, Tome 31 (2016), pp. 31-62. http://geodesic.mathdoc.fr/item/TAC_2016_31_a1/