Algebraically coherent categories
Theory and applications of categories, Tome 30 (2015), pp. 1864-1905.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We call a finitely complete category algebraically coherent if the change-of-base functors of its fibration of points are coherent, which means that they preserve finite limits and jointly strongly epimorphic pairs of arrows. We give examples of categories satisfying this condition; for instance, coherent categories and categories of interest in the sense of Orzech. We study equivalent conditions in the context of semi-abelian categories, as well as some of its consequences: including amongst others, strong protomodularity, and normality of Higgins commutators for normal subobjects, and in the varietal case, fibre-wise algebraic cartesian closedness.
Publié le :
Classification : 20F12, 08C05, 17A99, 18B25, 18G50}
Keywords: Coherent functor, Smith, Huq, Higgins commutator, semi-abelian, locally algebraically cartesian closed category, category of interest
@article{TAC_2015_30_a53,
     author = {Alan S. Cigoli and James R. A. Gray and Tim Van der Linden},
     title = {Algebraically coherent categories},
     journal = {Theory and applications of categories},
     pages = {1864--1905},
     publisher = {mathdoc},
     volume = {30},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2015_30_a53/}
}
TY  - JOUR
AU  - Alan S. Cigoli
AU  - James R. A. Gray
AU  - Tim Van der Linden
TI  - Algebraically coherent categories
JO  - Theory and applications of categories
PY  - 2015
SP  - 1864
EP  - 1905
VL  - 30
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2015_30_a53/
LA  - en
ID  - TAC_2015_30_a53
ER  - 
%0 Journal Article
%A Alan S. Cigoli
%A James R. A. Gray
%A Tim Van der Linden
%T Algebraically coherent categories
%J Theory and applications of categories
%D 2015
%P 1864-1905
%V 30
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2015_30_a53/
%G en
%F TAC_2015_30_a53
Alan S. Cigoli; James R. A. Gray; Tim Van der Linden. Algebraically coherent categories. Theory and applications of categories, Tome 30 (2015), pp. 1864-1905. http://geodesic.mathdoc.fr/item/TAC_2015_30_a53/