Mutation pairs and triangulated quotients
Theory and applications of categories, Tome 30 (2015), pp. 1823-1840.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We introduce the notion of mutation pairs in pseudo-triangulated categories. Given such a mutation pair, we prove that the corresponding quotient category carries a natural triangulated structure under certain conditions. This result unifies many previous constructions of quotient triangulated categories.
Publié le :
Classification : 18E10, 18E30
Keywords: Quotient category, mutation pair, pseudo-triangulated category, triangulated category
@article{TAC_2015_30_a51,
     author = {Zengqiang Lin and Minxiong Wang},
     title = {Mutation pairs and triangulated quotients},
     journal = {Theory and applications of categories},
     pages = {1823--1840},
     publisher = {mathdoc},
     volume = {30},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2015_30_a51/}
}
TY  - JOUR
AU  - Zengqiang Lin
AU  - Minxiong Wang
TI  - Mutation pairs and triangulated quotients
JO  - Theory and applications of categories
PY  - 2015
SP  - 1823
EP  - 1840
VL  - 30
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2015_30_a51/
LA  - en
ID  - TAC_2015_30_a51
ER  - 
%0 Journal Article
%A Zengqiang Lin
%A Minxiong Wang
%T Mutation pairs and triangulated quotients
%J Theory and applications of categories
%D 2015
%P 1823-1840
%V 30
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2015_30_a51/
%G en
%F TAC_2015_30_a51
Zengqiang Lin; Minxiong Wang. Mutation pairs and triangulated quotients. Theory and applications of categories, Tome 30 (2015), pp. 1823-1840. http://geodesic.mathdoc.fr/item/TAC_2015_30_a51/