Algebraic Kan extensions in double categories
Theory and applications of categories, Tome 30 (2015), pp. 86-146.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We study Kan extensions in three weakenings of the Eilenberg-Moore double category associated to a double monad, that was introduced by Grandis and Paré. To be precise, given a normal oplax double monad T on a double category K, we consider the double categories consisting of pseudo T-algebras, `weak' vertical T-morphisms, horizontal T-morphisms and T-cells, where `weak' means either `lax', `colax' or `pseudo'. Denoting these double categories by Alg_w(T), where w = l, c or ps accordingly, our main result gives, in each of these cases, conditions ensuring that (pointwise) Kan extensions can be lifted along the forgetful double functor Alg_w(T) --> K. As an application we recover and generalise a result by Getzler, on the lifting of pointwise left Kan extensions along symmetric monoidal enriched functors. As an application of Getzler's result we prove, in suitable symmetric monoidal categories, the existence of bicommutative Hopf monoids that are freely generated by cocommutative comonoids.
Publié le :
Classification : 18D05, 18C15, 18A40, 16T05
Keywords: double monad, algebraic Kan extension, free bicommutative Hopf monoid
@article{TAC_2015_30_a4,
     author = {Seerp Roald Koudenburg},
     title = {Algebraic {Kan} extensions in double categories},
     journal = {Theory and applications of categories},
     pages = {86--146},
     publisher = {mathdoc},
     volume = {30},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2015_30_a4/}
}
TY  - JOUR
AU  - Seerp Roald Koudenburg
TI  - Algebraic Kan extensions in double categories
JO  - Theory and applications of categories
PY  - 2015
SP  - 86
EP  - 146
VL  - 30
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2015_30_a4/
LA  - en
ID  - TAC_2015_30_a4
ER  - 
%0 Journal Article
%A Seerp Roald Koudenburg
%T Algebraic Kan extensions in double categories
%J Theory and applications of categories
%D 2015
%P 86-146
%V 30
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2015_30_a4/
%G en
%F TAC_2015_30_a4
Seerp Roald Koudenburg. Algebraic Kan extensions in double categories. Theory and applications of categories, Tome 30 (2015), pp. 86-146. http://geodesic.mathdoc.fr/item/TAC_2015_30_a4/