Deligne groupoid revisited
Theory and applications of categories, Tome 30 (2015), pp. 1001-1016.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We show that for a differential graded Lie algebra g whose components vanish in degrees below -1 the nerve of the Deligne 2-groupoid is homotopy equivalent to the simplicial set of g-valued differential forms introduced by V.~Hinich.
Publié le :
Classification : 18G55, 55U10
Keywords: groupoid, $L_\infty$-algebra, simplicial nerve
@article{TAC_2015_30_a28,
     author = {Paul Bressler and Alexander Gorokhovsky and Ryszard Nest and Boris Tsygan},
     title = {Deligne groupoid revisited},
     journal = {Theory and applications of categories},
     pages = {1001--1016},
     publisher = {mathdoc},
     volume = {30},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2015_30_a28/}
}
TY  - JOUR
AU  - Paul Bressler
AU  - Alexander Gorokhovsky
AU  - Ryszard Nest
AU  - Boris Tsygan
TI  - Deligne groupoid revisited
JO  - Theory and applications of categories
PY  - 2015
SP  - 1001
EP  - 1016
VL  - 30
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2015_30_a28/
LA  - en
ID  - TAC_2015_30_a28
ER  - 
%0 Journal Article
%A Paul Bressler
%A Alexander Gorokhovsky
%A Ryszard Nest
%A Boris Tsygan
%T Deligne groupoid revisited
%J Theory and applications of categories
%D 2015
%P 1001-1016
%V 30
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2015_30_a28/
%G en
%F TAC_2015_30_a28
Paul Bressler; Alexander Gorokhovsky; Ryszard Nest; Boris Tsygan. Deligne groupoid revisited. Theory and applications of categories, Tome 30 (2015), pp. 1001-1016. http://geodesic.mathdoc.fr/item/TAC_2015_30_a28/