Deligne groupoid revisited
Theory and applications of categories, Tome 30 (2015), pp. 1001-1016
Cet article a éte moissonné depuis la source Theory and Applications of Categories website
We show that for a differential graded Lie algebra g whose components vanish in degrees below -1 the nerve of the Deligne 2-groupoid is homotopy equivalent to the simplicial set of g-valued differential forms introduced by V.~Hinich.
Publié le :
Classification :
18G55, 55U10
Keywords: groupoid, $L_\infty$-algebra, simplicial nerve
Keywords: groupoid, $L_\infty$-algebra, simplicial nerve
@article{TAC_2015_30_a28,
author = {Paul Bressler and Alexander Gorokhovsky and Ryszard Nest and Boris Tsygan},
title = {Deligne groupoid revisited},
journal = {Theory and applications of categories},
pages = {1001--1016},
year = {2015},
volume = {30},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TAC_2015_30_a28/}
}
Paul Bressler; Alexander Gorokhovsky; Ryszard Nest; Boris Tsygan. Deligne groupoid revisited. Theory and applications of categories, Tome 30 (2015), pp. 1001-1016. http://geodesic.mathdoc.fr/item/TAC_2015_30_a28/