Skew-monoidal reflection and lifting theorems
Theory and applications of categories, Tome 30 (2015), pp. 985-1000.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

This paper extends the Day Reflection Theorem to skew monoidal categories. We also provide conditions under which a skew monoidal structure can be lifted to the category of Eilenberg-Moore coalgebras for a comonad.
Publié le :
Classification : 18D10, 18A40, 18D15, 18D20
Keywords: skew monoidal category, reflective subcategory, warping, comonad
@article{TAC_2015_30_a27,
     author = {Stephen Lack and Ross Street},
     title = {Skew-monoidal reflection and lifting theorems},
     journal = {Theory and applications of categories},
     pages = {985--1000},
     publisher = {mathdoc},
     volume = {30},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2015_30_a27/}
}
TY  - JOUR
AU  - Stephen Lack
AU  - Ross Street
TI  - Skew-monoidal reflection and lifting theorems
JO  - Theory and applications of categories
PY  - 2015
SP  - 985
EP  - 1000
VL  - 30
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2015_30_a27/
LA  - en
ID  - TAC_2015_30_a27
ER  - 
%0 Journal Article
%A Stephen Lack
%A Ross Street
%T Skew-monoidal reflection and lifting theorems
%J Theory and applications of categories
%D 2015
%P 985-1000
%V 30
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2015_30_a27/
%G en
%F TAC_2015_30_a27
Stephen Lack; Ross Street. Skew-monoidal reflection and lifting theorems. Theory and applications of categories, Tome 30 (2015), pp. 985-1000. http://geodesic.mathdoc.fr/item/TAC_2015_30_a27/