An algebraic definition of ($\infty$,n)-categories
Theory and applications of categories, Tome 30 (2015), pp. 751-774
Cet article a éte moissonné depuis la source Theory and Applications of Categories website
In this paper we define a sequence of monads $T^{(\infty,n)} (n\in\mathbb{N})$ on the category $\infty-Gr$ of $\infty$-graphs. We conjecture that algebras for $\T^{(\infty,0)}$, which are defined in a purely algebraic setting, are models of $\infty$-groupoids. More generally, we conjecture that $T^{(\infty,n)}$-algebras are models for $(\infty,n)$-categories. We prove that our $(\infty,0)$-categories are bigroupoids when truncated at level 2.
Publié le :
Classification :
18B40, 18C15, 18C20, 18G55, 20L99, 55U35, 55P15
Keywords: ($\infty$, n)-categories, weak $\infty$-groupoids, homotopy types
Keywords: ($\infty$, n)-categories, weak $\infty$-groupoids, homotopy types
@article{TAC_2015_30_a21,
author = {Camell Kachour},
title = {An algebraic definition of ($\infty$,n)-categories},
journal = {Theory and applications of categories},
pages = {751--774},
year = {2015},
volume = {30},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TAC_2015_30_a21/}
}
Camell Kachour. An algebraic definition of ($\infty$,n)-categories. Theory and applications of categories, Tome 30 (2015), pp. 751-774. http://geodesic.mathdoc.fr/item/TAC_2015_30_a21/