Polynomials in categories with pullbacks
Theory and applications of categories, Tome 30 (2015), pp. 533-598.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

The theory developed by Gambino and Kock, of polynomials over a locally cartesian closed category E, is generalised for E just having pullbacks. The 2-categorical analogue of the theory of polynomials and polynomial functors is given, and its relationship with Street's theory of fibrations within 2-categories is explored. Johnstone's notion of "bagdomain data" is adapted to the present framework to make it easier to completely exhibit examples of polynomial monads.
Publié le :
Classification : 18A05, 18D20, 18D50
Keywords: polynomial functors, 2-monads
@article{TAC_2015_30_a15,
     author = {Mark Weber},
     title = {Polynomials in categories with pullbacks},
     journal = {Theory and applications of categories},
     pages = {533--598},
     publisher = {mathdoc},
     volume = {30},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2015_30_a15/}
}
TY  - JOUR
AU  - Mark Weber
TI  - Polynomials in categories with pullbacks
JO  - Theory and applications of categories
PY  - 2015
SP  - 533
EP  - 598
VL  - 30
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2015_30_a15/
LA  - en
ID  - TAC_2015_30_a15
ER  - 
%0 Journal Article
%A Mark Weber
%T Polynomials in categories with pullbacks
%J Theory and applications of categories
%D 2015
%P 533-598
%V 30
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2015_30_a15/
%G en
%F TAC_2015_30_a15
Mark Weber. Polynomials in categories with pullbacks. Theory and applications of categories, Tome 30 (2015), pp. 533-598. http://geodesic.mathdoc.fr/item/TAC_2015_30_a15/