A cocategorical obstruction to tensor products of Gray-categories
Theory and applications of categories, Tome 30 (2015), pp. 387-409.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

It was argued by Crans that it is too much to ask that the category of Gray-categories admit a well behaved monoidal biclosed structure. We make this precise by establishing undesirable properties that any such monoidal biclosed structure must have. In particular we show that there does not exist any tensor product making the model category of Gray-categories into a monoidal model category.
Publié le :
Classification : 18D05, 18D15, 18D35
Keywords: Gray-category, monoidal biclosed category, cocategory
@article{TAC_2015_30_a10,
     author = {John Bourke and Nick Gurski},
     title = {A cocategorical obstruction to tensor products of {Gray-categories}},
     journal = {Theory and applications of categories},
     pages = {387--409},
     publisher = {mathdoc},
     volume = {30},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2015_30_a10/}
}
TY  - JOUR
AU  - John Bourke
AU  - Nick Gurski
TI  - A cocategorical obstruction to tensor products of Gray-categories
JO  - Theory and applications of categories
PY  - 2015
SP  - 387
EP  - 409
VL  - 30
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2015_30_a10/
LA  - en
ID  - TAC_2015_30_a10
ER  - 
%0 Journal Article
%A John Bourke
%A Nick Gurski
%T A cocategorical obstruction to tensor products of Gray-categories
%J Theory and applications of categories
%D 2015
%P 387-409
%V 30
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2015_30_a10/
%G en
%F TAC_2015_30_a10
John Bourke; Nick Gurski. A cocategorical obstruction to tensor products of Gray-categories. Theory and applications of categories, Tome 30 (2015), pp. 387-409. http://geodesic.mathdoc.fr/item/TAC_2015_30_a10/