Analytic spectrum of rig categories
Theory and applications of categories, Tome 29 (2014), pp. 188-197.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We define the analytic spectrum of a rig category $(A,\oplus,\otimes)$, and equip it with a sheaf of categories of rational functions. If the category is additive, we define a sheaf of categories of analytic functions. We relate this construction to Berkovich's analytic spaces, to Durov's generalized schemes and to Haran's F-schemes. We use these relations to define analytic versions of Arakelov compactifications of affine arithmetic varieties.
Publié le :
Classification : 18D10, 14G22, 14G25, 11G35, 18C15
Keywords: Rig categories, global analytic geometry, generalized rings, Arakelov compactifications
@article{TAC_2014_29_a5,
     author = {Frederic Paugam},
     title = {Analytic spectrum of rig categories},
     journal = {Theory and applications of categories},
     pages = {188--197},
     publisher = {mathdoc},
     volume = {29},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2014_29_a5/}
}
TY  - JOUR
AU  - Frederic Paugam
TI  - Analytic spectrum of rig categories
JO  - Theory and applications of categories
PY  - 2014
SP  - 188
EP  - 197
VL  - 29
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2014_29_a5/
LA  - en
ID  - TAC_2014_29_a5
ER  - 
%0 Journal Article
%A Frederic Paugam
%T Analytic spectrum of rig categories
%J Theory and applications of categories
%D 2014
%P 188-197
%V 29
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2014_29_a5/
%G en
%F TAC_2014_29_a5
Frederic Paugam. Analytic spectrum of rig categories. Theory and applications of categories, Tome 29 (2014), pp. 188-197. http://geodesic.mathdoc.fr/item/TAC_2014_29_a5/