Analytic spectrum of rig categories
Theory and applications of categories, Tome 29 (2014), pp. 188-197
Cet article a éte moissonné depuis la source Theory and Applications of Categories website
We define the analytic spectrum of a rig category $(A,\oplus,\otimes)$, and equip it with a sheaf of categories of rational functions. If the category is additive, we define a sheaf of categories of analytic functions. We relate this construction to Berkovich's analytic spaces, to Durov's generalized schemes and to Haran's F-schemes. We use these relations to define analytic versions of Arakelov compactifications of affine arithmetic varieties.
Publié le :
Classification :
18D10, 14G22, 14G25, 11G35, 18C15
Keywords: Rig categories, global analytic geometry, generalized rings, Arakelov compactifications
Keywords: Rig categories, global analytic geometry, generalized rings, Arakelov compactifications
@article{TAC_2014_29_a5,
author = {Frederic Paugam},
title = {Analytic spectrum of rig categories},
journal = {Theory and applications of categories},
pages = {188--197},
year = {2014},
volume = {29},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TAC_2014_29_a5/}
}
Frederic Paugam. Analytic spectrum of rig categories. Theory and applications of categories, Tome 29 (2014), pp. 188-197. http://geodesic.mathdoc.fr/item/TAC_2014_29_a5/