Voir la notice de l'article provenant de la source Theory and Applications of Categories website
Given a torsion bundle gerbe on a compact smooth manifold or, more generally, on a compact étale Lie groupoid M, we show that the corresponding category of gerbe modules is equivalent to the category of finitely generated projective modules over an Azumaya algebra on M. This result can be seen as an equivariant Serre-Swan theorem for twisted vector bundles.
@article{TAC_2014_29_a27, author = {Christoph Schweigert and Christopher Tropp and Alessandro Valentino}, title = {A {Serre-Swan} theorem for gerbe modules on \'etale {Lie} groupoids}, journal = {Theory and applications of categories}, pages = {819--835}, publisher = {mathdoc}, volume = {29}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TAC_2014_29_a27/} }
TY - JOUR AU - Christoph Schweigert AU - Christopher Tropp AU - Alessandro Valentino TI - A Serre-Swan theorem for gerbe modules on étale Lie groupoids JO - Theory and applications of categories PY - 2014 SP - 819 EP - 835 VL - 29 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TAC_2014_29_a27/ LA - en ID - TAC_2014_29_a27 ER -
%0 Journal Article %A Christoph Schweigert %A Christopher Tropp %A Alessandro Valentino %T A Serre-Swan theorem for gerbe modules on étale Lie groupoids %J Theory and applications of categories %D 2014 %P 819-835 %V 29 %I mathdoc %U http://geodesic.mathdoc.fr/item/TAC_2014_29_a27/ %G en %F TAC_2014_29_a27
Christoph Schweigert; Christopher Tropp; Alessandro Valentino. A Serre-Swan theorem for gerbe modules on étale Lie groupoids. Theory and applications of categories, Tome 29 (2014), pp. 819-835. http://geodesic.mathdoc.fr/item/TAC_2014_29_a27/