On the monad of internal groupoids
Theory and applications of categories, Tome 28 (2013), pp. 150-65.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We deeply analyse the structural organisation of the fibration of points and of the monad of internal groupoids. From that we derive: 1) a new characterization of internal groupoids among reflexive graphs in the Mal'cev context; 2) a setting in which a Mal'cev category is necessarily a protomodular category.
Publié le :
Classification : 18G50, 18D35, 20J15, 08C05
Keywords: Fibration of points, monad of internal groupoids, Mal'cev and protomodular categories, split exact sequence, algebraic exponentiation
@article{TAC_2013_28_a4,
     author = {Dominique Bourn},
     title = {On the monad of internal groupoids},
     journal = {Theory and applications of categories},
     pages = {150--65},
     publisher = {mathdoc},
     volume = {28},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2013_28_a4/}
}
TY  - JOUR
AU  - Dominique Bourn
TI  - On the monad of internal groupoids
JO  - Theory and applications of categories
PY  - 2013
SP  - 150
EP  - 65
VL  - 28
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2013_28_a4/
LA  - en
ID  - TAC_2013_28_a4
ER  - 
%0 Journal Article
%A Dominique Bourn
%T On the monad of internal groupoids
%J Theory and applications of categories
%D 2013
%P 150-65
%V 28
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2013_28_a4/
%G en
%F TAC_2013_28_a4
Dominique Bourn. On the monad of internal groupoids. Theory and applications of categories, Tome 28 (2013), pp. 150-65. http://geodesic.mathdoc.fr/item/TAC_2013_28_a4/