On the monad of internal groupoids
Theory and applications of categories, Tome 28 (2013), pp. 150-65
Cet article a éte moissonné depuis la source Theory and Applications of Categories website
We deeply analyse the structural organisation of the fibration of points and of the monad of internal groupoids. From that we derive: 1) a new characterization of internal groupoids among reflexive graphs in the Mal'cev context; 2) a setting in which a Mal'cev category is necessarily a protomodular category.
Publié le :
Classification :
18G50, 18D35, 20J15, 08C05
Keywords: Fibration of points, monad of internal groupoids, Mal'cev and protomodular categories, split exact sequence, algebraic exponentiation
Keywords: Fibration of points, monad of internal groupoids, Mal'cev and protomodular categories, split exact sequence, algebraic exponentiation
@article{TAC_2013_28_a4,
author = {Dominique Bourn},
title = {On the monad of internal groupoids},
journal = {Theory and applications of categories},
pages = {150--65},
year = {2013},
volume = {28},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TAC_2013_28_a4/}
}
Dominique Bourn. On the monad of internal groupoids. Theory and applications of categories, Tome 28 (2013), pp. 150-65. http://geodesic.mathdoc.fr/item/TAC_2013_28_a4/