Galois theories of commutative semigroups via semilattices
Theory and applications of categories, Tome 28 (2013), pp. 1153-1169.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

The classes of stably-vertical, normal, separable, inseparable, purely inseparable and covering morphisms, defined in categorical Galois theory, are characterized for the reflection of the variety of commutative semigroups into its subvariety of semilattices. It is also shown that there is an inseparable-separable factorization, but there is no monotone-light factorization.
Publié le :
Classification : 18C99, 08B99, 20M07
Keywords: Commutative semigroups, semilattices, admissible reflection, covering morphisms, stably-vertical morphisms, normal morphisms, inseparable-separable factorization
@article{TAC_2013_28_a32,
     author = {Isabel A. Xarez and Joao J. Xarez},
     title = {Galois theories of commutative semigroups via semilattices},
     journal = {Theory and applications of categories},
     pages = {1153--1169},
     publisher = {mathdoc},
     volume = {28},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2013_28_a32/}
}
TY  - JOUR
AU  - Isabel A. Xarez
AU  - Joao J. Xarez
TI  - Galois theories of commutative semigroups via semilattices
JO  - Theory and applications of categories
PY  - 2013
SP  - 1153
EP  - 1169
VL  - 28
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2013_28_a32/
LA  - en
ID  - TAC_2013_28_a32
ER  - 
%0 Journal Article
%A Isabel A. Xarez
%A Joao J. Xarez
%T Galois theories of commutative semigroups via semilattices
%J Theory and applications of categories
%D 2013
%P 1153-1169
%V 28
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2013_28_a32/
%G en
%F TAC_2013_28_a32
Isabel A. Xarez; Joao J. Xarez. Galois theories of commutative semigroups via semilattices. Theory and applications of categories, Tome 28 (2013), pp. 1153-1169. http://geodesic.mathdoc.fr/item/TAC_2013_28_a32/