Galois theories of commutative semigroups via semilattices
Theory and applications of categories, Tome 28 (2013), pp. 1153-1169
Cet article a éte moissonné depuis la source Theory and Applications of Categories website
The classes of stably-vertical, normal, separable, inseparable, purely inseparable and covering morphisms, defined in categorical Galois theory, are characterized for the reflection of the variety of commutative semigroups into its subvariety of semilattices. It is also shown that there is an inseparable-separable factorization, but there is no monotone-light factorization.
Publié le :
Classification :
18C99, 08B99, 20M07
Keywords: Commutative semigroups, semilattices, admissible reflection, covering morphisms, stably-vertical morphisms, normal morphisms, inseparable-separable factorization
Keywords: Commutative semigroups, semilattices, admissible reflection, covering morphisms, stably-vertical morphisms, normal morphisms, inseparable-separable factorization
@article{TAC_2013_28_a32,
author = {Isabel A. Xarez and Joao J. Xarez},
title = {Galois theories of commutative semigroups via semilattices},
journal = {Theory and applications of categories},
pages = {1153--1169},
year = {2013},
volume = {28},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TAC_2013_28_a32/}
}
Isabel A. Xarez; Joao J. Xarez. Galois theories of commutative semigroups via semilattices. Theory and applications of categories, Tome 28 (2013), pp. 1153-1169. http://geodesic.mathdoc.fr/item/TAC_2013_28_a32/