Voir la notice de l'article provenant de la source Theory and Applications of Categories website
The classes of stably-vertical, normal, separable, inseparable, purely inseparable and covering morphisms, defined in categorical Galois theory, are characterized for the reflection of the variety of commutative semigroups into its subvariety of semilattices. It is also shown that there is an inseparable-separable factorization, but there is no monotone-light factorization.
@article{TAC_2013_28_a32, author = {Isabel A. Xarez and Joao J. Xarez}, title = {Galois theories of commutative semigroups via semilattices}, journal = {Theory and applications of categories}, pages = {1153--1169}, publisher = {mathdoc}, volume = {28}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TAC_2013_28_a32/} }
Isabel A. Xarez; Joao J. Xarez. Galois theories of commutative semigroups via semilattices. Theory and applications of categories, Tome 28 (2013), pp. 1153-1169. http://geodesic.mathdoc.fr/item/TAC_2013_28_a32/