Semiunital semimonoidal categories (Applications to semirings and semicorings)
Theory and applications of categories, Tome 28 (2013), pp. 123-149.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

The category $_{A}\mathbb{S}_{A}$ of bisemimodules over a semialgebra $A,$ with the so called Takahashi's tensor-like product $-\boxtimes _{A}-,$ is semimonoidal but not monoidal. Although not a unit in $_{A}\mathbb{S}% _{A},$ the base semialgebra $A$ has properties of a semiunit (in a sense which we clarify in this note). Motivated by this interesting example, we investigate semiunital semimonoidal categories $(\mathcal{V}% ,\bullet ,\mathbf{I})$ as a framework for studying notions like semimonoids (semicomonoids) as well as a notion of monads (comonads) which we call $\mathbb{J}$-monads ($\mathbb{J}$-comonads) with respect to the endo-functor $\mathbb{J}:=\mathbf{I}\bullet -\simeq -\bullet \mathbf{I}:\mathcal{V}\longrightarrow \mathcal{V}.$ This motivated also introducing a more generalized notion of monads (comonads) in arbitrary categories with respect to arbitrary endo-functors. Applications to the semiunital semimonoidal variety $(_{A}\mathbb{S}_{A},\boxtimes _{A},A) $ provide us with examples of semiunital $A$-semirings (semicounital $A$-semicorings) and semiunitary semimodules (semicounitary semicomodules) which extend the classical notions of unital rings (counital corings) and unitary modules (counitary comodules).
Publié le :
Classification : 18C15, 18D10, 16W30
Keywords: Semimonoidal Categories, Semiunits, Monads, Comonads, Semirings, Semimodules, Semicorings, Semicomodules
@article{TAC_2013_28_a3,
     author = {Jawad Abuhlail},
     title = {Semiunital semimonoidal categories {(Applications} to semirings and
semicorings)},
     journal = {Theory and applications of categories},
     pages = {123--149},
     publisher = {mathdoc},
     volume = {28},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2013_28_a3/}
}
TY  - JOUR
AU  - Jawad Abuhlail
TI  - Semiunital semimonoidal categories (Applications to semirings and
semicorings)
JO  - Theory and applications of categories
PY  - 2013
SP  - 123
EP  - 149
VL  - 28
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2013_28_a3/
LA  - en
ID  - TAC_2013_28_a3
ER  - 
%0 Journal Article
%A Jawad Abuhlail
%T Semiunital semimonoidal categories (Applications to semirings and
semicorings)
%J Theory and applications of categories
%D 2013
%P 123-149
%V 28
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2013_28_a3/
%G en
%F TAC_2013_28_a3
Jawad Abuhlail. Semiunital semimonoidal categories (Applications to semirings and
semicorings). Theory and applications of categories, Tome 28 (2013), pp. 123-149. http://geodesic.mathdoc.fr/item/TAC_2013_28_a3/