Voir la notice de l'article provenant de la source Theory and Applications of Categories website
The category $_{A}\mathbb{S}_{A}$ of bisemimodules over a semialgebra $A,$ with the so called Takahashi's tensor-like product $-\boxtimes _{A}-,$ is semimonoidal but not monoidal. Although not a unit in $_{A}\mathbb{S}% _{A},$ the base semialgebra $A$ has properties of a semiunit (in a sense which we clarify in this note). Motivated by this interesting example, we investigate semiunital semimonoidal categories $(\mathcal{V}% ,\bullet ,\mathbf{I})$ as a framework for studying notions like semimonoids (semicomonoids) as well as a notion of monads (comonads) which we call $\mathbb{J}$-monads ($\mathbb{J}$-comonads) with respect to the endo-functor $\mathbb{J}:=\mathbf{I}\bullet -\simeq -\bullet \mathbf{I}:\mathcal{V}\longrightarrow \mathcal{V}.$ This motivated also introducing a more generalized notion of monads (comonads) in arbitrary categories with respect to arbitrary endo-functors. Applications to the semiunital semimonoidal variety $(_{A}\mathbb{S}_{A},\boxtimes _{A},A) $ provide us with examples of semiunital $A$-semirings (semicounital $A$-semicorings) and semiunitary semimodules (semicounitary semicomodules) which extend the classical notions of unital rings (counital corings) and unitary modules (counitary comodules).
@article{TAC_2013_28_a3, author = {Jawad Abuhlail}, title = {Semiunital semimonoidal categories {(Applications} to semirings and semicorings)}, journal = {Theory and applications of categories}, pages = {123--149}, publisher = {mathdoc}, volume = {28}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TAC_2013_28_a3/} }
Jawad Abuhlail. Semiunital semimonoidal categories (Applications to semirings and semicorings). Theory and applications of categories, Tome 28 (2013), pp. 123-149. http://geodesic.mathdoc.fr/item/TAC_2013_28_a3/