Forms and exterior differentiation in Cartesian differential categories
Theory and applications of categories, Tome 28 (2013), pp. 981-1001.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

Cartesian differential categories abstractly capture the notion of a differentiation operation. In this paper, we develop some of the theory of such categories by defining differential forms and exterior differentiation in this setting. We show that this exterior derivative, as expected, produces a cochain complex.
Publié le :
Classification : 18D99, 53A99
Keywords: Cartesian differential categories, Differential forms, Exterior derivative, de Rham cohomology
@article{TAC_2013_28_a27,
     author = {G.S.H. Cruttwell},
     title = {Forms and exterior differentiation in {Cartesian} differential categories},
     journal = {Theory and applications of categories},
     pages = {981--1001},
     publisher = {mathdoc},
     volume = {28},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2013_28_a27/}
}
TY  - JOUR
AU  - G.S.H. Cruttwell
TI  - Forms and exterior differentiation in Cartesian differential categories
JO  - Theory and applications of categories
PY  - 2013
SP  - 981
EP  - 1001
VL  - 28
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2013_28_a27/
LA  - en
ID  - TAC_2013_28_a27
ER  - 
%0 Journal Article
%A G.S.H. Cruttwell
%T Forms and exterior differentiation in Cartesian differential categories
%J Theory and applications of categories
%D 2013
%P 981-1001
%V 28
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2013_28_a27/
%G en
%F TAC_2013_28_a27
G.S.H. Cruttwell. Forms and exterior differentiation in Cartesian differential categories. Theory and applications of categories, Tome 28 (2013), pp. 981-1001. http://geodesic.mathdoc.fr/item/TAC_2013_28_a27/