A double categorical model of weak 2-categories
Theory and applications of categories, Tome 28 (2013), pp. 933-980.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We introduce the notion of weakly globular double categories, a particular class of strict double categories, as a way to model weak 2-categories. We show that this model is suitably equivalent to bicategories and give an explicit description of the functors involved in this biequivalence. As an application we show that groupoidal weakly globular double categories model homotopy 2-types.
Publié le :
Classification : 18D05, 18G55, 18G30
Keywords: double categories, strict 2-categories, bicategories, Tamsamani weak 2-categories, pseudo-functors, strictification
@article{TAC_2013_28_a26,
     author = {Simona Paoli and Dorette Pronk},
     title = {A double categorical model of weak 2-categories},
     journal = {Theory and applications of categories},
     pages = {933--980},
     publisher = {mathdoc},
     volume = {28},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2013_28_a26/}
}
TY  - JOUR
AU  - Simona Paoli
AU  - Dorette Pronk
TI  - A double categorical model of weak 2-categories
JO  - Theory and applications of categories
PY  - 2013
SP  - 933
EP  - 980
VL  - 28
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2013_28_a26/
LA  - en
ID  - TAC_2013_28_a26
ER  - 
%0 Journal Article
%A Simona Paoli
%A Dorette Pronk
%T A double categorical model of weak 2-categories
%J Theory and applications of categories
%D 2013
%P 933-980
%V 28
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2013_28_a26/
%G en
%F TAC_2013_28_a26
Simona Paoli; Dorette Pronk. A double categorical model of weak 2-categories. Theory and applications of categories, Tome 28 (2013), pp. 933-980. http://geodesic.mathdoc.fr/item/TAC_2013_28_a26/