The algebra of the nerves of omega-categories
Theory and applications of categories, Tome 28 (2013), pp. 733-779.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We show that the nerve of a strict omega-category can be described algebraically as a simplicial set with additional operations subject to certain identities. The resulting structures are called sets with complicial identities. We also construct an equivalence between the categories of strict omega-categories and of sets with complical identities.
Publié le :
Classification : 18D05
Keywords: complicial identities, omega-category
@article{TAC_2013_28_a22,
     author = {Richard Steiner},
     title = {The algebra of the nerves of omega-categories},
     journal = {Theory and applications of categories},
     pages = {733--779},
     publisher = {mathdoc},
     volume = {28},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2013_28_a22/}
}
TY  - JOUR
AU  - Richard Steiner
TI  - The algebra of the nerves of omega-categories
JO  - Theory and applications of categories
PY  - 2013
SP  - 733
EP  - 779
VL  - 28
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2013_28_a22/
LA  - en
ID  - TAC_2013_28_a22
ER  - 
%0 Journal Article
%A Richard Steiner
%T The algebra of the nerves of omega-categories
%J Theory and applications of categories
%D 2013
%P 733-779
%V 28
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2013_28_a22/
%G en
%F TAC_2013_28_a22
Richard Steiner. The algebra of the nerves of omega-categories. Theory and applications of categories, Tome 28 (2013), pp. 733-779. http://geodesic.mathdoc.fr/item/TAC_2013_28_a22/