Duality for distributive spaces
Theory and applications of categories, Tome 28 (2013), pp. 66-122.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

The main source of inspiration for the present paper is the work of R. Rosebrugh and R.J. Wood on constructively completely distributive lattices where the authors elegantly employ the concepts of adjunction and module. Both notions (suitably adapted) are available in topology too, which permits us to investigate topological, metric and other kinds of spaces in a similar spirit. We introduce here the notion of distributive space and algebraic space and show in particular that the category of distributive spaces and colimit preserving maps is dually equivalent to the idempotent split completion of a category of spaces and convergence relations between them. We explain the connection of this result to the well-known duality between topological spaces and frames, and deduce further duality theorems.
Publié le :
Classification : 06B35, 06B30, 18D05, 18D15, 18D20, 18B35, 18C15, 54A05, 54A20, 54B30
Keywords: Topological space, approach space, ultrafilter monad, quantale-enriched category, module, cocompleteness, distributivity, duality theory
@article{TAC_2013_28_a2,
     author = {Dirk Hofmann},
     title = {Duality for distributive spaces},
     journal = {Theory and applications of categories},
     pages = {66--122},
     publisher = {mathdoc},
     volume = {28},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2013_28_a2/}
}
TY  - JOUR
AU  - Dirk Hofmann
TI  - Duality for distributive spaces
JO  - Theory and applications of categories
PY  - 2013
SP  - 66
EP  - 122
VL  - 28
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2013_28_a2/
LA  - en
ID  - TAC_2013_28_a2
ER  - 
%0 Journal Article
%A Dirk Hofmann
%T Duality for distributive spaces
%J Theory and applications of categories
%D 2013
%P 66-122
%V 28
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2013_28_a2/
%G en
%F TAC_2013_28_a2
Dirk Hofmann. Duality for distributive spaces. Theory and applications of categories, Tome 28 (2013), pp. 66-122. http://geodesic.mathdoc.fr/item/TAC_2013_28_a2/