Categories enriched over a quantaloid: Isbell adjunctions and Kan adjunctions
Theory and applications of categories, Tome 28 (2013), pp. 577-615.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

Each distributor between categories enriched over a small quantaloid Q gives rise to two adjunctions between the categories of contravariant and covariant presheaves, and hence to two monads. These two adjunctions are respectively generalizations of Isbell adjunctions and Kan extensions in category theory. It is proved that these two processes are functorial with infomorphisms playing as morphisms between distributors; and that the free cocompletion functor of Q-categories factors through both of these functors.
Publié le :
Classification : 18A40, 18D20
Keywords: Quantaloid, Q-distributor, complete Q-category, Q-closure space, Isbell adjunction, Kan adjunction
@article{TAC_2013_28_a19,
     author = {Lili Shen and Dexue Zhang},
     title = {Categories enriched over a quantaloid: {Isbell} adjunctions and {Kan
adjunctions}},
     journal = {Theory and applications of categories},
     pages = {577--615},
     publisher = {mathdoc},
     volume = {28},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2013_28_a19/}
}
TY  - JOUR
AU  - Lili Shen
AU  - Dexue Zhang
TI  - Categories enriched over a quantaloid: Isbell adjunctions and Kan
adjunctions
JO  - Theory and applications of categories
PY  - 2013
SP  - 577
EP  - 615
VL  - 28
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2013_28_a19/
LA  - en
ID  - TAC_2013_28_a19
ER  - 
%0 Journal Article
%A Lili Shen
%A Dexue Zhang
%T Categories enriched over a quantaloid: Isbell adjunctions and Kan
adjunctions
%J Theory and applications of categories
%D 2013
%P 577-615
%V 28
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2013_28_a19/
%G en
%F TAC_2013_28_a19
Lili Shen; Dexue Zhang. Categories enriched over a quantaloid: Isbell adjunctions and Kan
adjunctions. Theory and applications of categories, Tome 28 (2013), pp. 577-615. http://geodesic.mathdoc.fr/item/TAC_2013_28_a19/