Tensors, monads and actions
Theory and applications of categories, Tome 28 (2013), pp. 403-434
Cet article a éte moissonné depuis la source Theory and Applications of Categories website
We exhibit sufficient conditions for a monoidal monad $T$ on a monoidal category $C$ to induce a monoidal structure on the Eilenberg--Moore category $C^T$ that represents bimorphisms. The category of actions in $C^T$ is then shown to be monadic over the base category $C$.
Publié le :
Classification :
18C20, 18D10, 18D35
Keywords: monoidal category, monad, Eilenberg--Moore category, bimorphism, action
Keywords: monoidal category, monad, Eilenberg--Moore category, bimorphism, action
@article{TAC_2013_28_a14,
author = {Gavin J. Seal},
title = {Tensors, monads and actions},
journal = {Theory and applications of categories},
pages = {403--434},
year = {2013},
volume = {28},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TAC_2013_28_a14/}
}
Gavin J. Seal. Tensors, monads and actions. Theory and applications of categories, Tome 28 (2013), pp. 403-434. http://geodesic.mathdoc.fr/item/TAC_2013_28_a14/