Tensors, monads and actions
Theory and applications of categories, Tome 28 (2013), pp. 403-434.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We exhibit sufficient conditions for a monoidal monad $T$ on a monoidal category $C$ to induce a monoidal structure on the Eilenberg--Moore category $C^T$ that represents bimorphisms. The category of actions in $C^T$ is then shown to be monadic over the base category $C$.
Publié le :
Classification : 18C20, 18D10, 18D35
Keywords: monoidal category, monad, Eilenberg--Moore category, bimorphism, action
@article{TAC_2013_28_a14,
     author = {Gavin J. Seal},
     title = {Tensors, monads and actions},
     journal = {Theory and applications of categories},
     pages = {403--434},
     publisher = {mathdoc},
     volume = {28},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2013_28_a14/}
}
TY  - JOUR
AU  - Gavin J. Seal
TI  - Tensors, monads and actions
JO  - Theory and applications of categories
PY  - 2013
SP  - 403
EP  - 434
VL  - 28
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2013_28_a14/
LA  - en
ID  - TAC_2013_28_a14
ER  - 
%0 Journal Article
%A Gavin J. Seal
%T Tensors, monads and actions
%J Theory and applications of categories
%D 2013
%P 403-434
%V 28
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2013_28_a14/
%G en
%F TAC_2013_28_a14
Gavin J. Seal. Tensors, monads and actions. Theory and applications of categories, Tome 28 (2013), pp. 403-434. http://geodesic.mathdoc.fr/item/TAC_2013_28_a14/