n-tuple groupoids and optimally coupled factorizations
Theory and applications of categories, Tome 28 (2013), pp. 304-331.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

In this paper, we prove that the category of vacant $n$-tuple groupoids is equivalent to the category of factorizations of groupoids by $n$ factors that satisfy some Yang-Baxter type equation. Moreover we extend this equivalence to the category of maximally exclusive $n$-tuple groupoids, which we define, by dropping one assumption. The paper concludes by a note on how these results could tell us more about some Lie groups of interest.
Publié le :
Classification : 18D05, 18A32, 18B40
Keywords: factorization, groupoid, cubical categories
@article{TAC_2013_28_a11,
     author = {Dany Majard},
     title = {n-tuple groupoids and optimally coupled factorizations},
     journal = {Theory and applications of categories},
     pages = {304--331},
     publisher = {mathdoc},
     volume = {28},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2013_28_a11/}
}
TY  - JOUR
AU  - Dany Majard
TI  - n-tuple groupoids and optimally coupled factorizations
JO  - Theory and applications of categories
PY  - 2013
SP  - 304
EP  - 331
VL  - 28
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2013_28_a11/
LA  - en
ID  - TAC_2013_28_a11
ER  - 
%0 Journal Article
%A Dany Majard
%T n-tuple groupoids and optimally coupled factorizations
%J Theory and applications of categories
%D 2013
%P 304-331
%V 28
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2013_28_a11/
%G en
%F TAC_2013_28_a11
Dany Majard. n-tuple groupoids and optimally coupled factorizations. Theory and applications of categories, Tome 28 (2013), pp. 304-331. http://geodesic.mathdoc.fr/item/TAC_2013_28_a11/