Homotopy theories of diagrams
Theory and applications of categories, Tome 28 (2013), pp. 269-303.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

Suppose that S is a space. There is an injective and a projective model structure for the resulting category of spaces with S-action, and both are easily derived. These model structures are special cases of model structures for presheaf-valued diagrams $X$ defined on a fixed presheaf of categories E which is enriched in simplicial sets.Varying the parameter category object E (or parameter space S) along with the diagrams X up to weak equivalence requires model structures for E-diagrams having weak equivalences defined by homotopy colimits, and a generalization of Thomason's model structure for small categories to a model structure for presheaves of simplicial categories.
Publié le :
Classification : Primary 18F20, Secondary 18G30, 55U35
Keywords: model structures, presheaves of categories, diagrams
@article{TAC_2013_28_a10,
     author = {J.F. Jardine},
     title = {Homotopy theories of diagrams},
     journal = {Theory and applications of categories},
     pages = {269--303},
     publisher = {mathdoc},
     volume = {28},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2013_28_a10/}
}
TY  - JOUR
AU  - J.F. Jardine
TI  - Homotopy theories of diagrams
JO  - Theory and applications of categories
PY  - 2013
SP  - 269
EP  - 303
VL  - 28
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2013_28_a10/
LA  - en
ID  - TAC_2013_28_a10
ER  - 
%0 Journal Article
%A J.F. Jardine
%T Homotopy theories of diagrams
%J Theory and applications of categories
%D 2013
%P 269-303
%V 28
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2013_28_a10/
%G en
%F TAC_2013_28_a10
J.F. Jardine. Homotopy theories of diagrams. Theory and applications of categories, Tome 28 (2013), pp. 269-303. http://geodesic.mathdoc.fr/item/TAC_2013_28_a10/