Weakly Mal'tsev categories and strong relations
Theory and applications of categories, CT2011, Tome 27 (2012), pp. 65-79.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We define a strong relation in a category $\mathbb{C}$ to be a span which is ``orthogonal'' to the class of jointly epimorphic pairs of morphisms. Under the presence of finite limits, a strong relation is simply a strong monomorphism $R\rightarrow X\times Y$. We show that a category $\mathbb{C}$ with pullbacks and equalizers is a weakly Mal'tsev category if and only if every reflexive strong relation in $\mathbb{C}$ is an equivalence relation. In fact, we obtain a more general result which includes, as its another particular instance, a similar well-known characterization of Mal'tsev categories.
Publié le :
Classification : 18C99, 18A20
Keywords: weakly Mal'tsev category, Mal'tsev category, difunctional relation, factorization system
@article{TAC_2012_27_a4,
     author = {Zurab Janelidze and Nelson Martins-Ferreira},
     title = {Weakly {Mal'tsev} categories and strong relations},
     journal = {Theory and applications of categories},
     pages = {65--79},
     publisher = {mathdoc},
     volume = {27},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2012_27_a4/}
}
TY  - JOUR
AU  - Zurab Janelidze
AU  - Nelson Martins-Ferreira
TI  - Weakly Mal'tsev categories and strong relations
JO  - Theory and applications of categories
PY  - 2012
SP  - 65
EP  - 79
VL  - 27
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2012_27_a4/
LA  - en
ID  - TAC_2012_27_a4
ER  - 
%0 Journal Article
%A Zurab Janelidze
%A Nelson Martins-Ferreira
%T Weakly Mal'tsev categories and strong relations
%J Theory and applications of categories
%D 2012
%P 65-79
%V 27
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2012_27_a4/
%G en
%F TAC_2012_27_a4
Zurab Janelidze; Nelson Martins-Ferreira. Weakly Mal'tsev categories and strong relations. Theory and applications of categories, CT2011, Tome 27 (2012), pp. 65-79. http://geodesic.mathdoc.fr/item/TAC_2012_27_a4/