The core of adjoint functors
Theory and applications of categories, CT2011, Tome 27 (2012), pp. 47-64.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

There is a lot of redundancy in the usual definition of adjoint functors. We define and prove the core of what is required. First we do this in the hom-enriched context. Then we do it in the cocompletion of a bicategory with respect to Kleisli objects, which we then apply to internal categories. Finally, we describe a doctrinal setting.
Publié le :
Classification : 18A40, 18D10, 18D05
Keywords: adjoint functor, enriched category, bicategory, Kleisli cocompletion
@article{TAC_2012_27_a3,
     author = {Ross Street},
     title = {The core of adjoint functors},
     journal = {Theory and applications of categories},
     pages = {47--64},
     publisher = {mathdoc},
     volume = {27},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2012_27_a3/}
}
TY  - JOUR
AU  - Ross Street
TI  - The core of adjoint functors
JO  - Theory and applications of categories
PY  - 2012
SP  - 47
EP  - 64
VL  - 27
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2012_27_a3/
LA  - en
ID  - TAC_2012_27_a3
ER  - 
%0 Journal Article
%A Ross Street
%T The core of adjoint functors
%J Theory and applications of categories
%D 2012
%P 47-64
%V 27
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2012_27_a3/
%G en
%F TAC_2012_27_a3
Ross Street. The core of adjoint functors. Theory and applications of categories, CT2011, Tome 27 (2012), pp. 47-64. http://geodesic.mathdoc.fr/item/TAC_2012_27_a3/