A characterization of representable intervals
Theory and applications of categories, Tome 26 (2012), pp. 204-232.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

In this note we provide a characterization, in terms of additional algebraic structure, of those strict intervals (certain cocategory objects) in a symmetric monoidal closed category $\cal E$ that are representable in the sense of inducing on $\cal E$ the structure of a finitely bicomplete 2-category. Several examples and connections with the homotopy theory of 2-categories are also discussed.
Publié le :
Classification : Primary: 18D05, Secondary: 18D35
@article{TAC_2012_26_a7,
     author = {Michael A. Warren},
     title = {A characterization of representable intervals},
     journal = {Theory and applications of categories},
     pages = {204--232},
     publisher = {mathdoc},
     volume = {26},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2012_26_a7/}
}
TY  - JOUR
AU  - Michael A. Warren
TI  - A characterization of representable intervals
JO  - Theory and applications of categories
PY  - 2012
SP  - 204
EP  - 232
VL  - 26
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2012_26_a7/
LA  - en
ID  - TAC_2012_26_a7
ER  - 
%0 Journal Article
%A Michael A. Warren
%T A characterization of representable intervals
%J Theory and applications of categories
%D 2012
%P 204-232
%V 26
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2012_26_a7/
%G en
%F TAC_2012_26_a7
Michael A. Warren. A characterization of representable intervals. Theory and applications of categories, Tome 26 (2012), pp. 204-232. http://geodesic.mathdoc.fr/item/TAC_2012_26_a7/