Tangled circuits
Theory and applications of categories, Tome 26 (2012), pp. 743-767.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We consider commutative Frobenius algebras in braided strict monoidal categories in the study of the circuits and communicating systems which occur in Computer Science, including circuits in which the wires are tangled. We indicate also some possible novel geometric interest in such algebras. For example, we show how Armstrong's description of knot colourings and knot groups fit into this context.
Publié le :
Classification : 18B20, 18D10, 68Q05, 68Q85
Keywords: circuit diagram, braided monoidal category, tangle algebra
@article{TAC_2012_26_a26,
     author = {R. Rosebrugh and N. Sabadini and R. F. C. Walters},
     title = {Tangled circuits},
     journal = {Theory and applications of categories},
     pages = {743--767},
     publisher = {mathdoc},
     volume = {26},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2012_26_a26/}
}
TY  - JOUR
AU  - R. Rosebrugh
AU  - N. Sabadini
AU  - R. F. C. Walters
TI  - Tangled circuits
JO  - Theory and applications of categories
PY  - 2012
SP  - 743
EP  - 767
VL  - 26
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2012_26_a26/
LA  - en
ID  - TAC_2012_26_a26
ER  - 
%0 Journal Article
%A R. Rosebrugh
%A N. Sabadini
%A R. F. C. Walters
%T Tangled circuits
%J Theory and applications of categories
%D 2012
%P 743-767
%V 26
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2012_26_a26/
%G en
%F TAC_2012_26_a26
R. Rosebrugh; N. Sabadini; R. F. C. Walters. Tangled circuits. Theory and applications of categories, Tome 26 (2012), pp. 743-767. http://geodesic.mathdoc.fr/item/TAC_2012_26_a26/