Duality and traces for indexed monoidal categories
Theory and applications of categories, Tome 26 (2012), pp. 582-659.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

By the Lefschetz fixed point theorem, if an endomorphism of a topological space is fixed-point-free, then its Lefschetz number vanishes. This necessary condition is not usually sufficient, however; for that we need a refinement of the Lefschetz number called the Reidemeister trace. Abstractly, the Lefschetz number is a trace in a symmetric monoidal category, while the Reidemeister trace is a trace in a bicategory; in this paper we relate these contexts using indexed symmetric monoidal categories. In particular, we will show that for any symmetric monoidal category with an associated indexed symmetric monoidal category, there is an associated bicategory which produces refinements of trace analogous to the Reidemeister trace. This bicategory also produces a new notion of trace for parametrized spaces with dualizable fibers, which refines the obvious ``fiberwise'' traces by incorporating the action of the fundamental group of the base space. We also advance the basic theory of indexed monoidal categories, including introducing a string diagram calculus which makes calculations much more tractable. This abstract framework lays the foundation for generalizations of these ideas to other contexts.
Publié le :
Classification : 18D10, 18D30
Keywords: duality, trace, monoidal category, indexed category, fiberwise duality
@article{TAC_2012_26_a22,
     author = {Kate Ponto and Michael Shulman},
     title = {Duality and traces for indexed monoidal categories},
     journal = {Theory and applications of categories},
     pages = {582--659},
     publisher = {mathdoc},
     volume = {26},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2012_26_a22/}
}
TY  - JOUR
AU  - Kate Ponto
AU  - Michael Shulman
TI  - Duality and traces for indexed monoidal categories
JO  - Theory and applications of categories
PY  - 2012
SP  - 582
EP  - 659
VL  - 26
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2012_26_a22/
LA  - en
ID  - TAC_2012_26_a22
ER  - 
%0 Journal Article
%A Kate Ponto
%A Michael Shulman
%T Duality and traces for indexed monoidal categories
%J Theory and applications of categories
%D 2012
%P 582-659
%V 26
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2012_26_a22/
%G en
%F TAC_2012_26_a22
Kate Ponto; Michael Shulman. Duality and traces for indexed monoidal categories. Theory and applications of categories, Tome 26 (2012), pp. 582-659. http://geodesic.mathdoc.fr/item/TAC_2012_26_a22/