Bimonadicity and the explicit basis property
Theory and applications of categories, Tome 26 (2012), pp. 554-581
Cet article a éte moissonné depuis la source Theory and Applications of Categories website
Let ${L\dashv R:\cal X \rightarrow\cal Y}$ be an adjunction with $R$ monadic and $L$ comonadic. Denote the induced monad on $\cal Y$ by $M$ and the induced comonad on $\calX$ by $C$. We characterize those $C$ such that $M$ satisfies the Explicit Basis property. We also discuss some new examples and results motivated by this characterization.
Publié le :
Classification :
18C20, 18E05, 08B20, 08B30
Keywords: (co)monads, projective objects, descent, modular categories, Peano algebras
Keywords: (co)monads, projective objects, descent, modular categories, Peano algebras
@article{TAC_2012_26_a21,
author = {Matias Menni},
title = {Bimonadicity and the explicit basis property},
journal = {Theory and applications of categories},
pages = {554--581},
year = {2012},
volume = {26},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TAC_2012_26_a21/}
}
Matias Menni. Bimonadicity and the explicit basis property. Theory and applications of categories, Tome 26 (2012), pp. 554-581. http://geodesic.mathdoc.fr/item/TAC_2012_26_a21/