Bimonadicity and the explicit basis property
Theory and applications of categories, Tome 26 (2012), pp. 554-581.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

Let ${L\dashv R:\cal X \rightarrow\cal Y}$ be an adjunction with $R$ monadic and $L$ comonadic. Denote the induced monad on $\cal Y$ by $M$ and the induced comonad on $\calX$ by $C$. We characterize those $C$ such that $M$ satisfies the Explicit Basis property. We also discuss some new examples and results motivated by this characterization.
Publié le :
Classification : 18C20, 18E05, 08B20, 08B30
Keywords: (co)monads, projective objects, descent, modular categories, Peano algebras
@article{TAC_2012_26_a21,
     author = {Matias Menni},
     title = {Bimonadicity and the explicit basis property},
     journal = {Theory and applications of categories},
     pages = {554--581},
     publisher = {mathdoc},
     volume = {26},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2012_26_a21/}
}
TY  - JOUR
AU  - Matias Menni
TI  - Bimonadicity and the explicit basis property
JO  - Theory and applications of categories
PY  - 2012
SP  - 554
EP  - 581
VL  - 26
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2012_26_a21/
LA  - en
ID  - TAC_2012_26_a21
ER  - 
%0 Journal Article
%A Matias Menni
%T Bimonadicity and the explicit basis property
%J Theory and applications of categories
%D 2012
%P 554-581
%V 26
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2012_26_a21/
%G en
%F TAC_2012_26_a21
Matias Menni. Bimonadicity and the explicit basis property. Theory and applications of categories, Tome 26 (2012), pp. 554-581. http://geodesic.mathdoc.fr/item/TAC_2012_26_a21/