Yoneda representations of flat functors and classifying toposes
Theory and applications of categories, Tome 26 (2012), pp. 538-553.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We obtain semantic characterizations, holding for any Grothendieck site $(C, J)$, for the models of a theory classified by a topos of the form $Sh(C,J)$ in terms of the models of a theory classified by a topos $[C^{op}, Set]$. These characterizations arise from an appropriate representation of flat functors into Grothendieck toposes based on an application of the Yoneda Lemma in conjunction with ideas from indexed category theory, and turn out to be relevant also in different contexts, in particular for addressing questions in classical Model Theory.
Publié le :
Classification : 03G30, 18C10, 18B25
Keywords: Classifying topos, Yoneda lemma, flat functor, theory of presheaf type
@article{TAC_2012_26_a20,
     author = {Olivia Caramello},
     title = {Yoneda representations of flat functors and classifying toposes},
     journal = {Theory and applications of categories},
     pages = {538--553},
     publisher = {mathdoc},
     volume = {26},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2012_26_a20/}
}
TY  - JOUR
AU  - Olivia Caramello
TI  - Yoneda representations of flat functors and classifying toposes
JO  - Theory and applications of categories
PY  - 2012
SP  - 538
EP  - 553
VL  - 26
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2012_26_a20/
LA  - en
ID  - TAC_2012_26_a20
ER  - 
%0 Journal Article
%A Olivia Caramello
%T Yoneda representations of flat functors and classifying toposes
%J Theory and applications of categories
%D 2012
%P 538-553
%V 26
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2012_26_a20/
%G en
%F TAC_2012_26_a20
Olivia Caramello. Yoneda representations of flat functors and classifying toposes. Theory and applications of categories, Tome 26 (2012), pp. 538-553. http://geodesic.mathdoc.fr/item/TAC_2012_26_a20/