On diagram-chasing in double complexes
Theory and applications of categories, Tome 26 (2012), pp. 60-96.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We construct, for any double complex in an abelian category, certain ``short-distance'' maps, and an exact sequence involving these, instances of which can be pieced together to give the ``long-distance'' maps and exact sequences of results such as the Snake Lemma.Further applications are given. We also note what the building blocks of an analogous study of triple complexes would be.
Publié le :
Classification : Primary: 18G35. Secondary: 18E10
Keywords: double complex, exact sequence, diagram-chasing, Salamander Lemma, total homology, triple complex
@article{TAC_2012_26_a2,
     author = {George M. Bergman},
     title = {On diagram-chasing in double complexes},
     journal = {Theory and applications of categories},
     pages = {60--96},
     publisher = {mathdoc},
     volume = {26},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2012_26_a2/}
}
TY  - JOUR
AU  - George M. Bergman
TI  - On diagram-chasing in double complexes
JO  - Theory and applications of categories
PY  - 2012
SP  - 60
EP  - 96
VL  - 26
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2012_26_a2/
LA  - en
ID  - TAC_2012_26_a2
ER  - 
%0 Journal Article
%A George M. Bergman
%T On diagram-chasing in double complexes
%J Theory and applications of categories
%D 2012
%P 60-96
%V 26
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2012_26_a2/
%G en
%F TAC_2012_26_a2
George M. Bergman. On diagram-chasing in double complexes. Theory and applications of categories, Tome 26 (2012), pp. 60-96. http://geodesic.mathdoc.fr/item/TAC_2012_26_a2/