Opetopes and chain complexes
Theory and applications of categories, Tome 26 (2012), pp. 501-519.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We give a simple algebraic description of opetopes in terms of chain complexes, and we show how this description is related to combinatorial descriptions in terms of treelike structures. More generally, we show that the chain complexes associated to higher categories generate graphlike structures. The algebraic description gives a relationship between the opetopic approach and other approaches to higher category theory. It also gives an easy way to calculate the sources and targets of opetopes.
Publié le :
Classification : 18D05
Keywords: opetope, augmented directed complex
@article{TAC_2012_26_a18,
     author = {Richard Steiner},
     title = {Opetopes and chain complexes},
     journal = {Theory and applications of categories},
     pages = {501--519},
     publisher = {mathdoc},
     volume = {26},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2012_26_a18/}
}
TY  - JOUR
AU  - Richard Steiner
TI  - Opetopes and chain complexes
JO  - Theory and applications of categories
PY  - 2012
SP  - 501
EP  - 519
VL  - 26
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2012_26_a18/
LA  - en
ID  - TAC_2012_26_a18
ER  - 
%0 Journal Article
%A Richard Steiner
%T Opetopes and chain complexes
%J Theory and applications of categories
%D 2012
%P 501-519
%V 26
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2012_26_a18/
%G en
%F TAC_2012_26_a18
Richard Steiner. Opetopes and chain complexes. Theory and applications of categories, Tome 26 (2012), pp. 501-519. http://geodesic.mathdoc.fr/item/TAC_2012_26_a18/