Range categories I: General theory
Theory and applications of categories, Tome 26 (2012), pp. 412-452.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

In this two-part paper, we undertake a systematic study of abstract partial map categories in which every map has both a restriction (domain of definition) and a range (image). In this first part, we explore connections with related structures such as inverse categories and allegories, and establish two representational results. The first of these explains how every range category can be fully and faithfully embedded into a category of partial maps equipped with a suitable factorization system. The second is a generalization of a result from semigroup theory by Boris Schein, and says that every small range category satisfying the additional condition that every map is an epimorphism onto its range can be faithfully embedded into the category of sets and partial functions with the usual notion of range. Finally, we give an explicit construction of the free range category on a partial map category in terms of certain types of labeled trees.
Publié le :
Classification : 18A15, 18A32, 18D20
Keywords: Categories of partial maps, restriction category, factorization systems
@article{TAC_2012_26_a16,
     author = {J.R.B. Cockett and Xiuzhan Guo and Pieter Hofstra},
     title = {Range categories {I:} {General} theory},
     journal = {Theory and applications of categories},
     pages = {412--452},
     publisher = {mathdoc},
     volume = {26},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2012_26_a16/}
}
TY  - JOUR
AU  - J.R.B. Cockett
AU  - Xiuzhan Guo
AU  - Pieter Hofstra
TI  - Range categories I: General theory
JO  - Theory and applications of categories
PY  - 2012
SP  - 412
EP  - 452
VL  - 26
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2012_26_a16/
LA  - en
ID  - TAC_2012_26_a16
ER  - 
%0 Journal Article
%A J.R.B. Cockett
%A Xiuzhan Guo
%A Pieter Hofstra
%T Range categories I: General theory
%J Theory and applications of categories
%D 2012
%P 412-452
%V 26
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2012_26_a16/
%G en
%F TAC_2012_26_a16
J.R.B. Cockett; Xiuzhan Guo; Pieter Hofstra. Range categories I: General theory. Theory and applications of categories, Tome 26 (2012), pp. 412-452. http://geodesic.mathdoc.fr/item/TAC_2012_26_a16/