A presheaf interpretation of the generalized Freyd conjecture
Theory and applications of categories, Tome 26 (2012), pp. 403-411.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We give a generalized version of the Freyd conjecture and a way to think about a possible proof. The essential point is to describe an elementary formal reduction of the question that holds in any triangulated category. There are no new results, but at least one known example drops out very easily.
Publié le :
Classification : 18E30, 55P42
Keywords: Freyd conjecture, generating hypothesis, stable homotopy category
@article{TAC_2012_26_a15,
     author = {Anna Marie Bohmann and J. P. May},
     title = {A presheaf interpretation of the generalized {Freyd} conjecture},
     journal = {Theory and applications of categories},
     pages = {403--411},
     publisher = {mathdoc},
     volume = {26},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2012_26_a15/}
}
TY  - JOUR
AU  - Anna Marie Bohmann
AU  - J. P. May
TI  - A presheaf interpretation of the generalized Freyd conjecture
JO  - Theory and applications of categories
PY  - 2012
SP  - 403
EP  - 411
VL  - 26
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2012_26_a15/
LA  - en
ID  - TAC_2012_26_a15
ER  - 
%0 Journal Article
%A Anna Marie Bohmann
%A J. P. May
%T A presheaf interpretation of the generalized Freyd conjecture
%J Theory and applications of categories
%D 2012
%P 403-411
%V 26
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2012_26_a15/
%G en
%F TAC_2012_26_a15
Anna Marie Bohmann; J. P. May. A presheaf interpretation of the generalized Freyd conjecture. Theory and applications of categories, Tome 26 (2012), pp. 403-411. http://geodesic.mathdoc.fr/item/TAC_2012_26_a15/