Higher categorified algebras versus bounded homotopy algebras
Theory and applications of categories, Tome 25 (2011), pp. 251-275.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We define Lie 3-algebras and prove that these are in 1-to-1 correspondence with the 3-term Lie infinity algebras whose bilinear and trilinear maps vanish in degree (1,1) and in total degree 1, respectively. Further, we give an answer to a question of Roytenberg pertaining to the use of the nerve and normalization functors in the study of the relationship between categorified algebras and truncated sh algebras.
Publié le :
Classification : 18D05, 55U15, 17B70, 18D10, 18G30
Keywords: Higher category, homotopy algebra, monoidal category, Eilenberg-Zilber map
@article{TAC_2011_25_a9,
     author = {David Khudaverdyan and Ashis Mandal and Norbert Poncin},
     title = {Higher categorified algebras versus bounded homotopy algebras},
     journal = {Theory and applications of categories},
     pages = {251--275},
     publisher = {mathdoc},
     volume = {25},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2011_25_a9/}
}
TY  - JOUR
AU  - David Khudaverdyan
AU  - Ashis Mandal
AU  - Norbert Poncin
TI  - Higher categorified algebras versus bounded homotopy algebras
JO  - Theory and applications of categories
PY  - 2011
SP  - 251
EP  - 275
VL  - 25
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2011_25_a9/
LA  - en
ID  - TAC_2011_25_a9
ER  - 
%0 Journal Article
%A David Khudaverdyan
%A Ashis Mandal
%A Norbert Poncin
%T Higher categorified algebras versus bounded homotopy algebras
%J Theory and applications of categories
%D 2011
%P 251-275
%V 25
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2011_25_a9/
%G en
%F TAC_2011_25_a9
David Khudaverdyan; Ashis Mandal; Norbert Poncin. Higher categorified algebras versus bounded homotopy algebras. Theory and applications of categories, Tome 25 (2011), pp. 251-275. http://geodesic.mathdoc.fr/item/TAC_2011_25_a9/