Voir la notice de l'article provenant de la source Theory and Applications of Categories website
We define Lie 3-algebras and prove that these are in 1-to-1 correspondence with the 3-term Lie infinity algebras whose bilinear and trilinear maps vanish in degree (1,1) and in total degree 1, respectively. Further, we give an answer to a question of Roytenberg pertaining to the use of the nerve and normalization functors in the study of the relationship between categorified algebras and truncated sh algebras.
@article{TAC_2011_25_a9, author = {David Khudaverdyan and Ashis Mandal and Norbert Poncin}, title = {Higher categorified algebras versus bounded homotopy algebras}, journal = {Theory and applications of categories}, pages = {251--275}, publisher = {mathdoc}, volume = {25}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TAC_2011_25_a9/} }
TY - JOUR AU - David Khudaverdyan AU - Ashis Mandal AU - Norbert Poncin TI - Higher categorified algebras versus bounded homotopy algebras JO - Theory and applications of categories PY - 2011 SP - 251 EP - 275 VL - 25 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TAC_2011_25_a9/ LA - en ID - TAC_2011_25_a9 ER -
David Khudaverdyan; Ashis Mandal; Norbert Poncin. Higher categorified algebras versus bounded homotopy algebras. Theory and applications of categories, Tome 25 (2011), pp. 251-275. http://geodesic.mathdoc.fr/item/TAC_2011_25_a9/