Model-categories of coalgebras over operads
Theory and applications of categories, Tome 25 (2011), pp. 189-246.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

This paper constructs model structures on the categories of coalgebras and pointed irreducible coalgebras over an operad whose components are projective, finitely generated in each dimension, and satisfy a condition that allows one to take tensor products with a unit interval. The underlying chain-complex is assumed to be unbounded and the results for bounded coalgebras over an operad are derived from the unbounded case.
Publié le :
Classification : 18G55, 55U40
Keywords: operads, cofree coalgebras
@article{TAC_2011_25_a7,
     author = {Justin R. Smith},
     title = {Model-categories of coalgebras over operads},
     journal = {Theory and applications of categories},
     pages = {189--246},
     publisher = {mathdoc},
     volume = {25},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2011_25_a7/}
}
TY  - JOUR
AU  - Justin R. Smith
TI  - Model-categories of coalgebras over operads
JO  - Theory and applications of categories
PY  - 2011
SP  - 189
EP  - 246
VL  - 25
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2011_25_a7/
LA  - en
ID  - TAC_2011_25_a7
ER  - 
%0 Journal Article
%A Justin R. Smith
%T Model-categories of coalgebras over operads
%J Theory and applications of categories
%D 2011
%P 189-246
%V 25
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2011_25_a7/
%G en
%F TAC_2011_25_a7
Justin R. Smith. Model-categories of coalgebras over operads. Theory and applications of categories, Tome 25 (2011), pp. 189-246. http://geodesic.mathdoc.fr/item/TAC_2011_25_a7/