An embedding theorem for adhesive categories
Theory and applications of categories, Tome 25 (2011), pp. 180-188.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

Adhesive categories are categories which have pushouts with one leg a monomorphism, all pullbacks, and certain exactness conditions relating these pushouts and pullbacks. We give a new proof of the fact that every topos is adhesive. We also prove a converse: every small adhesive category has a fully faithful functor in a topos, with the functor preserving the all the structure. Combining these two results, we see that the exactness conditions in the definition of adhesive category are exactly the relationship between pushouts along monomorphisms and pullbacks which hold in any topos.
Publié le :
Classification : 18A30, 18B15, 18B25
Keywords: adhesive category, topos, embedding theorem
@article{TAC_2011_25_a6,
     author = {Stephen Lack},
     title = {An embedding theorem for adhesive categories},
     journal = {Theory and applications of categories},
     pages = {180--188},
     publisher = {mathdoc},
     volume = {25},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2011_25_a6/}
}
TY  - JOUR
AU  - Stephen Lack
TI  - An embedding theorem for adhesive categories
JO  - Theory and applications of categories
PY  - 2011
SP  - 180
EP  - 188
VL  - 25
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2011_25_a6/
LA  - en
ID  - TAC_2011_25_a6
ER  - 
%0 Journal Article
%A Stephen Lack
%T An embedding theorem for adhesive categories
%J Theory and applications of categories
%D 2011
%P 180-188
%V 25
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2011_25_a6/
%G en
%F TAC_2011_25_a6
Stephen Lack. An embedding theorem for adhesive categories. Theory and applications of categories, Tome 25 (2011), pp. 180-188. http://geodesic.mathdoc.fr/item/TAC_2011_25_a6/