Reflective-coreflective equivalence
Theory and applications of categories, Tome 25 (2011), pp. 142-179.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We explore a curious type of equivalence between certain pairs of reflective and coreflective subcategories. We illustrate with examples involving noncommutative duality for $C^*$-dynamical systems and compact quantum groups, as well as examples where the subcategories are actually isomorphic.
Publié le :
Classification : Primary 18A40, Secondary 46L55, 46L89
Keywords: adjoint functors, reflective and coreflective subcategories, equivalent categories, $C^*$-algebras, coactions, quantum groups
@article{TAC_2011_25_a5,
     author = {Erik B\'edos and S. Kaliszewski and John Quigg},
     title = {Reflective-coreflective equivalence},
     journal = {Theory and applications of categories},
     pages = {142--179},
     publisher = {mathdoc},
     volume = {25},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2011_25_a5/}
}
TY  - JOUR
AU  - Erik Bédos
AU  - S. Kaliszewski
AU  - John Quigg
TI  - Reflective-coreflective equivalence
JO  - Theory and applications of categories
PY  - 2011
SP  - 142
EP  - 179
VL  - 25
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2011_25_a5/
LA  - en
ID  - TAC_2011_25_a5
ER  - 
%0 Journal Article
%A Erik Bédos
%A S. Kaliszewski
%A John Quigg
%T Reflective-coreflective equivalence
%J Theory and applications of categories
%D 2011
%P 142-179
%V 25
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2011_25_a5/
%G en
%F TAC_2011_25_a5
Erik Bédos; S. Kaliszewski; John Quigg. Reflective-coreflective equivalence. Theory and applications of categories, Tome 25 (2011), pp. 142-179. http://geodesic.mathdoc.fr/item/TAC_2011_25_a5/