Reflective-coreflective equivalence
Theory and applications of categories, Tome 25 (2011), pp. 142-179
Cet article a éte moissonné depuis la source Theory and Applications of Categories website
We explore a curious type of equivalence between certain pairs of reflective and coreflective subcategories. We illustrate with examples involving noncommutative duality for $C^*$-dynamical systems and compact quantum groups, as well as examples where the subcategories are actually isomorphic.
Publié le :
Classification :
Primary 18A40, Secondary 46L55, 46L89
Keywords: adjoint functors, reflective and coreflective subcategories, equivalent categories, $C^*$-algebras, coactions, quantum groups
Keywords: adjoint functors, reflective and coreflective subcategories, equivalent categories, $C^*$-algebras, coactions, quantum groups
@article{TAC_2011_25_a5,
author = {Erik B\'edos and S. Kaliszewski and John Quigg},
title = {Reflective-coreflective equivalence},
journal = {Theory and applications of categories},
pages = {142--179},
year = {2011},
volume = {25},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TAC_2011_25_a5/}
}
Erik Bédos; S. Kaliszewski; John Quigg. Reflective-coreflective equivalence. Theory and applications of categories, Tome 25 (2011), pp. 142-179. http://geodesic.mathdoc.fr/item/TAC_2011_25_a5/